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Introduction
A novel source of human and animal exposure 
to endocrine-disrupting chemicals (EDCs) is 
through their use in oil and gas drilling opera-
tions. EDCs are exogenous compounds that 
can disrupt both development and normal 
hormone action either directly, by inter-
acting with hormone receptors as agonists/
antagonists, or indirectly by, for example, 
altering endogenous hormone concentra-
tions, delivery to receptors, modulation of 
endogenous hormone responses, enzyme 
activities, or other mechanisms (Bergman 
et al. 2013; Diamanti-Kandarakis et al. 2009; 
Zoeller et al. 2014). Importantly, oil and gas 
operation chemicals have been shown to act 
through both direct and indirect mechanisms 
(Andric et al. 2006; Kassotis et al. 2014; Knag 
et al. 2013; Thomas and Budiantara 1995). 
EDCs can exhibit effects at extremely low, 
environmentally relevant concentrations, 
particularly during sensitive windows when 
exposure can alter normal development and 
result in adverse health outcomes during 
adulthood (Vandenberg 2014; Vandenberg 
et al. 2012; vom Saal et al. 2007; Welshons 
et al. 2003). Although chemicals used in and 
produced by oil and gas operations include 

EDCs, carcinogens, radioactive compounds, 
and other toxicants, herein, we will focus on 
the unique issues posed by their endocrine-
disrupting activities.

In hydraulic fracturing, millions of 
gallons of water, tens of thousands of 
gallons of chemicals, and millions of kilo-
grams of suspended solids are injected into 
the ground under high pressure. Hydraulic 
fracturing serves to fracture the shale or coal 
bed layer and release trapped natural gas or 
oil, allowing for increased well production. 
Although hydraulic fracturing technologies 
have been developed over the last 65 years, 
they have only recently been combined with 
horizontal drilling to unlock vast new oil and 
gas reserves around the world that were previ-
ously deemed either inaccessible or unprofit-
able (Waxman et al. 2011; Wiseman 2008). 
Chemicals are added throughout the entire 
production process (including drilling, frac-
turing, and through closure) for a number of 
reasons (Table 1) (Deutch et al. 2011; Riedl 
et al. 2013; Waxman et al. 2011). In total, 
approximately 1,000 chemicals are known 
to be used throughout the process [U.S. 
Environmental Protection Agency (EPA) 
2015; Waxman et al. 2011].

Following the initial injection into the 
well to generate fractures, a portion of the 
injected volume returns to the surface imme-
diately; this fluid is known as “flow-back.” 
The remaining fluids either permeate the 
shale or coal bed formation and/or return to 
the surface over the life of the producing well; 
this fluid is known as “produced water.” Both 
types of wastewater can contain fracturing 
fluids, naturally occurring salts, radioactive 
materials, heavy metals, and other chemicals 
from the shale formation such as polycyclic 
aromatic hydrocarbons, alkenes, alkanes, 
and other volatile and semi-volatile organic 
compounds (Deutch et al. 2011; Fontenot 
et al. 2013; Harkness et  al. 2015; Harvey 
et al. 1984; Maule et al. 2013; Warner et al. 
2012). Wastewater is disposed of via injec-
tion wells, open evaporation pits, landfills, 
or treatment plants; through on-site burial; 
by being spread over road or fields; and/
or by being treated and reused in future 
hydraulic fracturing operations (Deutch et al. 
2011; Gilmore et al. 2014; Lee et al. 2011; 
Wiseman 2008). Treatment of wastewater for 
reuse or disposal varies by geological region 
owing to differing chemical compositions 
and may include biological treatment, filtra-
tion or aeration steps, and/or reverse-osmosis 
separation (Lester et al. 2015).
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Background: Hydraulic fracturing technologies, developed over the last 65 years, have only 
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inaccessible. Although these technologies have dramatically increased domestic oil and natural gas 
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with the approximately 1,000 chemicals that are used throughout the process, including many 
known or suspected endocrine-disrupting chemicals.

Objectives: We discuss the need for an endocrine component to health assessments for drilling-
dense regions in the context of hormonal and antihormonal activities for chemicals used.

Methods: We discuss the literature on a) surface and groundwater contamination by oil and 
gas extraction operations, and b) potential human exposure, particularly in the context of the 
total hormonal and antihormonal activities present in surface and groundwater from natural and 
anthropogenic sources; we also discuss initial analytical results and critical knowledge gaps.

Discussion: In light of the potential for environmental release of oil and gas chemicals that can 
disrupt hormone receptor systems, we recommend methods for assessing complex hormonally 
active environmental mixtures.

Conclusions: We describe a need for an endocrine-centric component for overall health assess-
ments and provide information supporting the idea that using such a component will help explain 
reported adverse health trends as well as help develop recommendations for environmental impact 
assessments and monitoring programs.
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Potential Routes of Exposure 
to Oil and Natural Gas 
Operation Chemicals

Water. Oil and natural gas operations can 
lead to the contamination of surface and 
groundwater, both of which are sources of 
drinking water (reviewed by Brantley et al. 
2014; Burton et  al. 2014; Vengosh et  al. 
2014). There are a variety of routes of 
contamination: spills of chemicals during 
transport to and from the fracturing site, the 
drilling and fracturing processes, improper 
treatment and disposal of wastewater, failure 
of well casings, and structural failure in aban-
doned wells (Ingraffea et al. 2014; Kell 2011; 
Mauter et al. 2014; Rozell and Reaven 2012).

In 2013, spills were reported at 1% of 
Colorado wells (550/51,000 active wells), 
and it has been estimated that 50% of surface 
spills contaminate groundwater on the 
basis of data from Weld County, Colorado 
(Gross et al. 2013). An analysis of permitted 
Pennsylvania wells suggests a similar total spill 
rate of 2% (103/5,580 active wells; Souther 
et al. 2014). Although all 24 states with active 
shale reservoirs report spills, reporting limits 
and required information vary widely, and 
only 5 states require maintenance of public 
records for spills and violations (Soraghan 
2014; Souther et  al. 2014). Given the 
limited mandatory reporting, it is likely that 
the magnitude of the impact of oil and gas 
operations on water quality is underestimated 
(Soraghan 2014; Souther et al. 2014). For 
example, an analysis in Pennsylvania found 
that industry had reported 59% of docu-
mented spills (Souther et al. 2014).

Wastewater is commonly sent to waste-
water treatment plants in many regions 
(Gilmore et  al. 2014) that are not able 
to remove many of the anthropogenic or 
naturally occurring compounds present in 
wastewater from shale operations (Braga 
et al. 2005; Campbell et al. 2006; Westerhoff 
et  al. 2005). Following this treatment, 
these compounds can be discharged into 
surface water (Ferrar et al. 2013b; Harkness 
et  al. 2015; Warner et  al. 2013, 2014). 
Transportation of chemicals for drilling and 
fracturing to well pads and transportation 
of wastewater away from well pads poses 
risks for contamination (Burton et al. 2014). 
Spills and leaks occur during transportation 
through wastewater pipelines, transfer to 
trucks at well pads, and vehicular transport to 
disposal facilities (Gilmore et al. 2014).

Groundwater contamination associated 
with oil and gas operations has also been 
reported (Fontenot et al. 2013; Jackson et al. 
2013; Osborn et  al. 2011; Vengosh et  al. 
2014). This contamination can occur via 
migration of chemicals from the surface or 
underground. An investigation of wastewater 

pits and impoundments in the Marcellus 
Shale region reported a lack of maintenance 
of containment and transport systems, with 
spills affecting groundwater largely as a result 
of equipment failures and corrosion of pipes 
and tanks (Ziemkiewicz et al. 2014). Surface 
spills of fracturing fluids can also contami-
nate groundwater, and elevated concentra-
tions of benzene, toluene, ethylbenzene, 
and xylenes (BTEX) have been reported in 
groundwater near surface spills (Gross et al. 
2013; Ziemkiewicz et  al. 2014). A recent 
U.S. EPA report conclusively linked hydraulic 
fracturing to drinking-water contamina-
tion at wells within five of six retrospective 
study regions; no baseline testing was avail-
able for the sixth region (U.S. EPA 2015). 
Underground migration potential is also a 
concern. Concentrations of heavy metals have 
been shown to increase in drinking water 
with proximity to natural gas wells (Fontenot 
et al. 2013), and thermogenic (shale-origin) 
gas concentrations in drinking water sampled 
from close proximity to natural gas wells have 

been reported to be higher than in water 
sampled from more distant sources (Jackson 
et al. 2013; Li and Carlson 2014; Osborn 
et al. 2011). Recent work suggests that the 
main reason for these findings may be faulty 
well casings (Darrah et al. 2014).

Air. Oil and natural gas production 
processes also contribute contaminants to 
the air, creating another potential route of 
exposure for humans and animals (Colborn 
et al. 2014; Helmig et al. 2014; Macey et al. 
2014; Moore et al. 2014). Potential sources 
of inhalation exposure for these chemicals 
include evaporation from surface spills and 
evaporation pits, flaring at the surface, and 
release of chemicals during surface transfers 
and during processing (Colborn et al. 2014; 
Trimble 2012). High-level releases of chemi-
cals are episodic (Brown et al. 2014, 2015). 
Elevated levels of volatile organic compounds 
(VOCs) such as BTEX, alkenes, alkanes, 
aromatic compounds, and aldehydes have 
been reported during drilling, production, 
and completion from nearby wells (Colborn 

Table 1. Functional categories of hydraulic fracturing chemicals [adapted from Colborn et al. (2011)].

Chemical categories Technical hydraulic fracturing use Example compounds
Acids To achieve greater injection ability or penetration 

and later to dissolve minerals and clays to reduce 
clogging, allowing gas to flow to the surface.

Hydrochloric acid

Biocides To prevent bacteria that can erode pipes and fittings 
and to break down gellants that serve to ensure 
that fluid viscosity and proppant transport are 
maintained. 

1-methyl-4-isothiazolin-3-one, 
bronopol, glutaraldehyde

Breakers To allow the breakdown of gellants used to carry 
the proppant; these are added near the end of 
the hydraulic fracturing sequence to enhance 
flowback.

Ammonium persulfate, magnesium 
peroxide

Clay stabilizers To create a fluid barrier to prevent mobilization of 
clays, which can plug fractures.

Tetramethyl ammonium chloride, 
sodium chloride

Corrosion inhibitors To reduce the potential for rusting in pipes and 
casings.

Ethoxylated octylphenol and 
nonylphenol, isopropanol

Crosslinkers To thicken fluids, often with metallic salts, in order 
to increase viscosity and proppant transport. 

Ethylene glycol, sodium tetraborate 
decahydrate, petroleum distillate

Defoamers To reduce foaming after it is no longer needed in 
order to lower surface tension and allow trapped 
gas to escape. 

2-ethylhexanol, oleic acid, oxalic acid

Foamers To increase carrying capacity while transporting 
proppants and decreasing the overall volume of 
fluid needed.

2-butoxyethanol, diethylene glycol

Friction reducers To make water slick and minimize the friction 
created under high pressure and to increase 
the rate and efficiency of moving the hydraulic 
fracturing fluid. 

Acrylamide, ethylene glycol, 
petroleum distillate, methanol

Gellants To increase viscosity and suspend sand during 
proppant transport.

Propylene glycol, guar gum, ethylene 
glycol

pH control To maintain the pH at various stages with buffers 
to ensure the maximum effectiveness of various 
additives.

Sodium hydroxide, acetic acid

Proppants To hold fissures open, allowing gas to flow out of the 
cracked formation; usually composed of sand and 
occasionally glass or ceramic beads.

Styrene, crystalline silica, ceramic, 
graphite

Scale inhibitors To prevent buildup of mineral scale that can block 
fluid and gas passage through the pipes.

Acrylamide, sodium polycarboxylate

Surfactants To decrease liquid surface tension and improve fluid 
passage through pipes in either direction.

Naphthalene, 1,2,4-trimethylbenzene, 
ethanol, methanol, 2-butoxyethanol

Categories and uses for commonly applied chemicals that are commonly used throughout the hydraulic fracturing process 
with specific examples provided for each category class. Adapted with permission from Colborn T et al. (2011). Reprinted 
by permission of Taylor & Francis LLC (http://www.tandfonline.com).
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et al. 2014; McKenzie et al. 2012; Roy et al. 
2014; Steinzor et al. 2013), in some cases 
exceeding levels observed in heavily polluted 
inner cities (Helmig et al. 2014).

Endocrine-Disrupting Chemicals 
and Oil and Gas Operations
EDC activity of chemicals used in oil and 
natural gas operations. Our laboratory has 
tested the estrogen and androgen receptor 
activities of 12 chemicals commonly used in 
oil and gas operations using a luminescence-
based reporter gene bioassay in human cancer 
cells. We measured stimulation of receptors 
(agonist) or inhibition of positive control–
induced expression (antagonist). We found 1 
estrogen receptor agonist, 11 estrogen receptor 
antagonists, and 10 androgen receptor antago-
nists; several chemicals exhibited multiple 
receptor activities (Kassotis et al. 2014).

A 2011 analysis reported approximately 
120 known or suspected EDCs out of 353 oil 
and gas operation chemicals with Chemical 
Abstract Service (CAS) numbers (Colborn 
et al. 2011). Importantly, only half of the 
known oil and gas operation chemicals had 
CAS numbers at that time, greatly limiting 
the health assessment for other chemicals used 
in these processes (Waxman et al. 2011). Still 
other chemicals remain proprietary informa-
tion (Shonkoff et al. 2014; Wiseman 2011). 
For example, a recent study found that 67%, 
37%, and 18% of assessed wells were frac-
tured with ≥ 1, 5, or 10 proprietary chemicals, 
respectively (Souther et al. 2014).

EDC activity in water near oil and natural 
gas operations. We assessed the estrogen and 
androgen receptor activities of water samples 
collected from five sites in a drilling-dense 
region of Garfield County, Colorado, that 
had experienced industry-related spills or 
preventable discharges relative to surface and 
groundwater collected immediately outside of 
the drilling-dense region (Kassotis et al. 2014). 
Analysis of these samples revealed that surface 
and groundwater from Garfield County spill 
sites contained significantly elevated estrogen 
agonist, estrogen antagonist, and androgen 
antagonist activities relative to those at refer-
ence sites (Kassotis et al. 2014). Independent 
analytical water testing at these sites identi-
fied chemicals that we or others have shown to 
exhibit these same agonist and antagonist activ-
ities (discussed by Kassotis et al. 2014). Other 
researchers have reported estrogen agonist 
and androgen antagonist activities associated 
with oil sands and oil production wastewater 
(He et al. 2011; Thomas et al. 2004, 2009; 
Tollefsen et al. 2007).

Concentration of oil and natural gas 
operation chemicals in water. Hydraulic 
fracturing wastewater is reported to contain 
hundreds of organic chemicals (polyeth-
ylene glycols, ethoxylated surfactants, BTEX 

compounds, biocides, polycyclic aromatic 
hydrocarbons, aromatic amines, and more), 
with total dissolved organic carbon as high 
as 5.5 g/L, and many individual compounds 
present at > 500 mg/L and up to grams per 
liter concentrations (Kahrilas et  al. 2015; 
Maguire-Boyle and Barron 2014; Orem et al. 
2014; Thurman et al. 2014). A recent report 
analyzed publicly available data on FracFocus, 
an industry disclosure website (http://www.
fracfocus.org/), and reported benzene ≤ 4.1% 
and naphthalene and ethylbenzene ≤ 0.45% 
of total fracturing fluid volume, resulting 
in milligrams per liter concentrations for 
these and other chemicals (Schaeffer and 
Bernhardt 2014).

Surface spills have been reported to 
contaminate groundwater with chemi-
cals from oil and gas operations (Gross 
et  al. 2013). Groundwater at surface spill 
sites contained 1.4, 2.2, 0.2, and 2.6 mg/L 
benzene, toluene, ethylbenzene, and xylene, 
respectively, and these concentrations 
decreased over time and distance from the spill 
sites (Gross et al. 2013). Sampling of ground-
water in Pavillion, Wyoming, by the U.S. 
EPA in a region where no specific accident 
or spill had occurred revealed concentrations 
of BTEX, naphthalene, ethylene glycols, and 
other oil and gas chemicals at concentrations 
ranging from 0.01 to 8 mg/L (DiGiulio et al. 
2011). Because some of these chemicals have 
been shown to disrupt multiple hormone 
receptors in vitro at concentrations in the 
micrograms per liter range (Kassotis et  al. 
2014), these groundwater samples contained 
concentrations of these chemicals within the 
bioactive range in our reporter gene assays. To 
date, few comprehensive analyses have been 
performed of oil and gas operation–derived 
chemicals in drinking-water samples.

Potential Endocrine-Related 
Health Effects of Oil and Gas 
Operation Chemicals 
Oil and gas operation chemicals and health 
effects. Evidence of potential harm from 
exposure to hazardous chemicals, pollutants, 
and emissions used in oil and natural gas 
operations has been reported. These reports 
have most often been case series involving 
natural experiments using quasi-experimental 
design and have investigated domestic animals 
and wildlife (Bamberger and Oswald 2012). 
Researchers have also begun to document in 
both reports and white papers the content 
and quantities of hazardous chemicals, pollut-
ants, and emissions associated with these 
operations (Eastern Research Group and Sage 
Environmental Consulting 2011; Ethridge 
2010; Steinzor et al. 2013; Witter et al. 2008). 
Concurrent with these environmental testing 
projects, surveys of local residents were also 
performed, and the reports suggested that 

living in close proximity to oil and gas opera-
tions has the potential to affect human and 
environmental health (Ferrar et al. 2013a; 
Rabinowitz et al. 2015; Steinzor et al. 2013; 
Subra 2009, 2010). At the present time, a 
limited number of epidemiology studies have 
been conducted to explore the relationship 
between health effects and exposure to oil and 
gas operation chemicals as described herein 
and as reviewed by Webb et al. (2014) and 
Werner et al. (2015).

The biological plausibility of health effects 
associated with exposure to hazardous chemi-
cals, pollutants, and emissions used in oil and 
natural gas operations has also been explored. 
Many of these chemicals have documented 
adverse health effects in humans, are designated 
priority pollutants by the U.S. EPA, and/or 
are known or suspected EDCs (Colborn et al. 
2011; Waxman et  al. 2011). For example, 
exposure to naphthalene, a constituent of 
crude oil and a chemical used by industry 
for hydraulic fracturing processes (Waxman 
et  al. 2011) and that has been reported in 
air and water near operations (Colborn et al. 
2014; DiGiulio et  al. 2011; Wolf Eagle 
Environmental 2009), can result in altered 
steroid hormone levels, increased reproductive 
abnormalities, and impaired sexual matura-
tion in animal models and in vitro (Hansen 
et al. 2008; Pollino et al. 2009; Thomas and 
Budiantara 1995; Tintos et al. 2006), albeit 
generally at greater concentrations than those 
reported near these sites.

Occupational exposures. As with all 
environmental exposures, those who work 
around or with hazardous chemicals face 
significantly higher exposure risk than does the 
general population. The National Institute of 
Occupational Health and Safety (NIOSH) has 
published two studies for the oil and natural 
gas extraction industry: one about work crew 
exposures to respirable crystalline silica, and 
the other about work crew exposures to VOCs 
(Esswein et al. 2013, 2014). In both cases, 
these pilot data indicated that some workers’ 
exposures exceeded NIOSH and/or ACGIH 
safe levels (reported therein) for crystalline 
silica, flammable hydrocarbon emissions, 
and benzene.

Reproductive effects. Exposure to VOCs 
including but not limited to benzene, toluene, 
ethylbenzene, xylenes, and formaldehyde, all 
chemicals used in and produced by oil and 
natural gas operations (Colborn et al. 2011; 
Waxman et  al. 2011), is associated with 
reproductive health effects in both humans 
and animals. These effects include impaired 
fertility and fecundity via reduced semen 
quality and impaired menstrual cycles as well as 
increased risk of miscarriage, stillbirth, preterm 
birth, and birth defects, as reviewed by Webb 
et al. (2014). A list of other adverse endo-
crine health effects due to exposure to single 
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chemicals used in and produced by oil and gas 
operations has been assembled and is avail-
able online (http://endocrinedisruption.org/
chemicals-in-natural-gas-operations/chemicals).

Adverse pregnancy outcomes. McKenzie 
et al. (2014) used spatial analysis to evaluate 
the likelihood of adverse pregnancy outcomes 
in a cohort of 12,842 live births for mothers 
living within 10  miles of drilling well 
operations compared with mothers with no 
drilling wells within 10 miles. Significantly 
increased risks for congenital heart defects 
[adjusted odds ratio (AOR)  =  1.3; 95% 
confidence interval (CI), 1.2, 1.5] and neural 
tube defects (AOR = 2.0; 95% CI: 1.0, 3.9) 
were observed, but no association with oral 
clefts (AOR = 0.82; 95% CI: 0.55, 1.2) was 
observed. In contrast, a study on low birth 
weight that used a similar design showed 
mixed results (McKenzie et al. 2014; Stacy 
et  al. 2015). In two case–control studies, 
maternal or paternal occupational exposure 
to glycol ethers (hormonally active chemi-
cals used in fracturing fluids; Kassotis et al. 
2014; U.S. EPA 2015; Waxman et al. 2011) 
and other chemicals (pesticides, polychlori-
nated compounds, phthalates, bisphenol A, 
alkylphenolic compounds, heavy metals, and 
miscellaneous agents) during pregnancy was 
associated with congenital malformations 
(Cordier et al. 1997).

Cancer. In a health impact assessment, 
McKenzie et al. (2012) used spatial modeling 
based on residence proximity (≤ 0.5 miles 
vs. > 0.5 miles) to oil and gas operations in 
Colorado and found an elevated cumulative 
cancer risk for people living near drilling 
wells (10 per 1,000,000 vs. 6 per 1,000,000). 
Two studies calculated standardized inci-
dence ratios. One study was a cancer cluster 
analysis that compared the rates for several 
cancers in a drilling-dense Texas town 
with state rates using 3 years of cancer inci-
dence data. Mokry et al. (2010) reported a 
statistically significantly elevated rate for 
breast cancer [(standardized incidence ratio 
(SIR) = 1.3; 95% CI: 1.1, 1.5]. The other 
study compared Pennsylvania counties before 
and after launching drilling operations. Fryzek 
et al. (2013) found a slightly increased rate 
of one cancer, central nervous system tumors 
(SIR  =  1.13; 95%  CI: 1.02,  1.25), after 
unconventional drilling operations began in 
northeast Pennsylvania (Fryzek et al. 2013).

Limitations and data gaps. Limitations of 
the above-mentioned studies are the lack of 
both direct exposure assessment and informa-
tion on residential mobility of study partici-
pants. To date, no longitudinal study has 
enrolled a cohort of residents in a community 
that has an active oil and natural gas extraction 
industry so that biomarkers can be obtained 
in a timely manner. Known and suspected 
risk factors need to be collected to fully model 

the exposure risk. The critical route/timing 
of exposure for hazardous chemicals associ-
ated with oil and natural gas operations has 
yet to be established. Drilling wells release 
different amounts of air pollutants at different 
stages of the development and production 
processes (Brown et al. 2014; Colborn et al. 
2014; Helmig et al. 2014; McKenzie et al. 
2012), and residents, including pregnant 
women, may be exposed to these pollutants 
throughout extraction or only during specific 
stages. Drinking-water exposure may show 
considerable heterogeneity owing to the 
hydrogeology of undergroundwater flow asso-
ciated with released natural and man-made 
chemicals, and limited data are available on 
contamination of drinking water in areas that 
have oil and natural gas operations.

Recommendations
The endocrine system is designed to respond 
to extremely low concentrations of hormones, 
making it uniquely equipped to assess exposure 
to low levels of exogenous hormonally active 
contaminants. Although toxicological studies 
often assess adverse outcomes from high-
exposure scenarios relevant to occupational 
exposure, endocrinological studies can assess 
outcomes from low-level exposure that may 
be more relevant to humans living near oil and 
natural gas operations. By combining existing 
in vivo EDC studies with knowledge of the 
hormone receptor activity profile of chemi-
cals used in oil and natural gas operations, we 
can identify adverse health outcomes in areas 
where humans and animals are exposed to 
these chemicals for epidemiological assessment. 
We can then use a modified Bradford-Hill 
approach to assess causality between environ-
mental exposures and adverse health outcomes, 
as suggested by Zoeller et  al. (2014). The 
risks related to potential exposure and adverse 
outcomes in humans and wildlife populations 
have not been afforded complete evaluations 
in part because of exemptions from parts of 
six key federal regulatory acts that traditionally 
act to safeguard U.S. water sources, including 
the Safe Drinking Water Act and the Clean 
Water Act (Clean Water Act 1972; Deutch 
et al. 2011; Safe Drinking Water Act 1974).

Based on the hypothesis that exposure 
to oil and natural gas chemicals contributes 
to negative health outcomes, we offer the 
following recommendations to evaluate the 
risks posed to humans and wildlife: a) inte-
grate endocrine-centric end points into human 
health assessments in areas of unconventional 
drilling operations; b) perform biomonitoring 
studies for chemicals and their metabolites 
in humans; c) develop an effect-directed 
screening approach to assess endocrine-related 
effects of mixtures; d) perform controlled labo-
ratory animal studies of exposure to complex 
mixtures of oil and natural gas chemicals to 

assess adverse health outcomes; and e) perform 
in vitro bioassays to assess receptor interactions 
with complex mixtures.

Endocrine health assessments. We suggest 
incorporating an endocrine-centric compo-
nent into overall human and environmental 
health assessments. An endocrine-centric 
health component would assume additivity 
of chemicals, an assumption that has been 
shown to be reasonable for chemicals acting 
through similar mechanisms of action (Payne 
et al. 2000; Rajapakse et al. 2002; Silva et al. 
2002). This approach would assess common 
adverse endocrine end points that have been 
shown to result from disruption of specific 
hormone receptors alone and in combination, 
including a) reproductive effects (infertility, 
subfertility, reduced sperm counts, miscar-
riage, preterm birth, birth weight, puberty), b) 
developmental irregularities (cryptorchidism, 
hypospadias, neural tube defects, congenital 
heart defects), and c) cancer, particularly 
hormone-responsive types such as testicular, 
breast, prostate, and brain cancers (reviewed 
by Bergman et al. 2013; Diamanti-Kandarakis 
et al. 2009; Vandenberg et al. 2012; Zoeller 
et al. 2012).

Measurement of chemicals in humans 
and wildlife (biomonitoring). One of the 
major limitations in human risk assessment 
of oil and natural gas operations is the paucity 
of chemical exposure information, consid-
ering the number of chemicals used and 
the proprietary disclosure rules. Until now, 
most research has focused on airborne emis-
sions (reviewed by Moore et al. 2014) and 
water contamination (reviewed by Rozell and 
Reaven 2012; Vengosh et al. 2014). Although 
epidemiological studies have begun to assess 
adverse health outcomes near drilling opera-
tions (McKenzie et al. 2014), to our knowl-
edge, no researchers have yet published data 
on concentrations of oil and gas operation 
chemicals in humans or wildlife.

Chemical characterization is required to 
determine appropriate biomonitoring candi-
dates. Recent work has detailed analytical 
approaches for characterizing the various 
classes of compounds present in hydraulic frac-
turing wastewater (Ferrer and Thurman 2015). 
We suggest that oil and gas wastewater be used 
to determine the presence of chemicals that can 
result in the observed agonist and/or antagonist 
responses. Initial identification should occur 
via reverse matching to known compound lists 
such as the National Institute of Standards and 
Technology (NIST) Spectral Search Program 
for the NIST/U.S. EPA/National Institutes of 
Health (NIH) Mass Spectral Library. These 
compounds can be further reverse-matched 
to known oil and gas operation chemicals 
(Colborn et al. 2011, 2014; U.S. EPA 2015; 
Waxman et al. 2011). Because this step may 
miss proprietary compounds not currently 
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reported by industry, it should be used as a 
supplement to reverse-matching databases. 
These compounds can then be confirmed by 
comparing them with authentic standards. 
These chemicals can be further tested in bioas-
says to determine receptor activities and their 
likely presence and contribution to activi-
ties in water. These data can then guide the 
development of analytical methods for target 
compounds and their metabolites serving as 
biomonitoring candidates in humans living 
near extraction operations.

Using effects-directed analysis to identify 
chemicals responsible for EDC activity. 
Analytical identification of hormonally active 
chemicals present in both water and air must 
be performed to better characterize source 
and exposure and to assess risk. Whenever 
possible, analysis of complex environmental 
samples should be performed using an 
effects-directed analysis approach (Burgess 
et al. 2013; Liscio et al. 2014; Rostkowski 
et al. 2011) coupled with a response–balance 
approach (Cargouët et al. 2004; Schriks et al. 
2010; Sun et al. 2008).

This effects-directed/response–balance 
approach should target the most hormonally 
active samples from drilling regions (as well as 
from reference sites to eliminate background 
activity/chemicals) for chemical fractionation 
and testing. These procedures should include 
orthogonal separations and screening of the 
resulting fractions in bioassays to refine and 
isolate bioactive chemicals. Refined fractions 
can then be analyzed using the mass spectrom-
etry (MS) tools described below and recently 
reported (Ferrer and Thurman 2015) to help 
identify chemicals responsible for observed 
activities. Once candidate chemicals have 
been identified, authentic standards may be 
used to confirm the MS identification and the 
bioactivity observed in bioassays. This method 
has been used successfully to identify novel 
bioactive compounds and represents the best 
approach for characterizing the EDCs that 
are most responsible for observed activities 
(Liscio et al. 2014; Rostkowski et al. 2011). 
Finally, biological activity can be coupled with 
chemical concentrations obtained from envi-
ronmental monitoring to determine relative 
contributions to observed receptor activities, as 
has been described by others (Cargouët et al. 
2004; Schriks et al. 2010; Sun et al. 2008).

EDC-centric laboratory animal health 
assessments. Laboratory animal models can 
and should be used to test for causal relation-
ships between exposure and negative health 
outcomes that might be expected in drilling-
dense regions. Humans and wildlife living in 
these regions are likely exposed to oil and gas 
operation chemicals during different develop-
mental windows, and known critical periods 
such as prenatal, perinatal, childhood, and 
puberty should be targeted. Studies of adult 

exposure should also be performed to assess 
occupational exposure and chronic exposure 
at environmentally relevant levels encountered 
by nearby residents. We further recommend 
that the route of exposure remain as relevant 
as possible. Likely exposure to chemicals may 
occur through oral, dermal, and/or inhalation 
routes, and parameters such as volatility and 
partition coefficients will help determine which 
exposure routes are of the highest concern 
for individual chemicals. Route of exposure 
is crucial to understanding health effects 
because varying routes of exposure can result 
in very different bioavailability of EDCs, as 
has recently been described for bisphenol A 
(Gayrard et al. 2013; Hormann et al. 2014; 
vom Saal and Welshons 2014). Adverse health 
outcomes that should be targeted are described 
above in both the section entitled “Potential 
Endocrine-Related Health Effects of Oil and 
Gas Operation Chemicals” as well as in our 
recommendation regarding endocrine health 
assessments and are known to result from 
exposure to EDCs (reviewed by Bergman 
et al. 2013; Diamanti-Kandarakis et al. 2009; 
Vandenberg et al. 2012; Zoeller et al. 2012); 
many protocols have been described for the 
evaluation of these end points (Diamanti-
Kandarakis et al. 2009; Schug et al. 2013; 
U.S. EPA 2009a, 2009b, 2009c; Zoeller et al. 
2012). These data can provide important 
information for further refining human epide-
miological studies as well as studies on pets 
and wildlife populations, which have recently 
been shown to be affected by endocrine health 
concerns (Bamberger and Oswald 2012, 2014, 
2015; Grant et al. 2015; Papoulias and Velasco 
2013; Slizovskiy et al. 2015).

Bioassays for complex mixtures. With 
approximately 1,000 chemicals used in and 
produced by oil and gas operations (U.S. EPA 
2015), there is a critical need for methods 
to assess the EDC activity of these complex 
mixtures. Methods of assessing the activity 
and potential health risks of mixtures that can 
appropriately address the interplay between 
receptor systems are limited. Observed 
outcomes in vivo can often be the result of 
disruption of several hormone receptor systems 
by single chemicals or by mixtures. Statistical 
modeling (Orton et al. 2012), in vitro and 
in vivo assays (Silva et al. 2002), quantitative 
structure analysis (Nishihara et al. 2000), gene 
expression (Richter et al. 2014), and other 
tools have been used to assess a number of 
laboratory-defined mixtures that interact with 
single hormone receptors.

Modeling complex mixtures can greatly 
reduce the number of independent tests 
that need to be performed when assessing 
toxicity. For example, Bertin et  al. used a 
neural networking model to assess mixture 
toxicity, achieving a predictive model with 
approximately 10% of actual interactions 

tested (Bertin et al. 2013). However, despite 
clear successes with relatively uncomplicated 
mixtures, analysis of more complicated 
mixtures appears to be beyond current capa-
bilities (Kortenkamp et  al. 2014; Orton 
et al. 2012) owing to insufficient knowledge 
of interreceptor interactions and indirect 
chemical–receptor interactions (Kortenkamp 
et al. 2014). An additional concern involves 
indirect interactions between chemicals and 
receptors. For example, interaction with the 
aryl hydrocarbon receptor can result in the 
activation of cytochrome P450 enzymes, 
which are well known to alter endogenous and 
exogenous chemical metabolism and therefore 
exposure (Anzenbacher and Anzenbacherová 
2001; Markowitz et al. 2003). Inactive chemi-
cals can be metabolized into active metabolites, 
resulting in mixtures of inactive chemicals that 
can act as agonists or antagonists in mixtures 
only (Gauger et al. 2007). Improved charac-
terization of these interactions will provide a 
clearer understanding of the utility models can 
provide towards assessing in vivo outcomes, as 
well as their limitations.

Because it is not possible to test all combi-
nations of chemicals in vitro and/or in vivo, 
we recommend performing guided in vitro 
and in vivo research that focuses on receptor 
interactions. We suggest that reporter gene 
assays be used for in vitro testing because of 
their low cost, ease of use, reliability, high 
sensitivity, and ease of adapting for multiple 
receptor systems (Naylor 1999; Rajapakse 
et al. 2002; Silva et al. 2002; Soto et al. 2006). 
Similar assays including yeast receptor screens 
[yeast estrogen screen (YES), yeast androgen 
screen (YAS), etc.] tend to be less robust and 
less sensitive, albeit less susceptible to toxicity, 
whereas cell proliferation assays (E-SCREEN, 
A-SCREEN, etc.) are equally sensitive and, 
unlike reporter gene assays, can measure 
nongenomic effects through cell-surface recep-
tors; however, they are generally less applicable 
for diverse receptor testing (Leusch et  al. 
2010). Current high-throughput assay options 
such as Tox21 or ToxCastTM are of great 
use as diverse first-pass screens for individual 
compounds, although it is unclear whether 
they will be helpful in the assessment of 
complex mixtures (Filer et al. 2014; Tice et al. 
2013). Rather than the single-receptor tests 
used by these systems, assessing chemicals and 
mixtures of chemicals in controlled multiple-
receptor systems is critical to understanding 
and accounting for receptor interplay.

Improvement of the utility of in  vitro 
assay systems should take place in several 
steps. First, receptor interaction can be 
assessed through testing positive controls in 
both the presence and the absence of other 
receptors. Ideally, this testing should be done 
across several cell lines to identify chemical 
impingement on receptor interactions and 
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tissue-specific comodulators. Once multiple-
receptor experiments are carried out with 
single chemicals, simple mixtures with clearly 
defined receptor activity profiles can be intro-
duced to determine how simultaneous inter-
actions with several receptors can modulate 
responses. Further work should be coupled 
with in vivo experiments to understand these 
interactions in a whole-animal model and to 
confirm in vitro multiple-receptor results.

Potential Implications
Recent analyses of the potential contributions 
of EDC exposures to adverse endocrine health 
outcomes, such as obesity, cancers (particularly 
hormone-dependent), reproduction/infertility, 
metabolic diseases, and developmental abnor-
malities, suggest that EDC exposures account 
for an estimated 1.8% to 40% of societal 
health care costs (Hunt and Ferguson 2014; 
Olsson 2014; Trasande 2014). More recently, 
a suite of studies estimated the potential health 
care costs for the European Union (EU) due 
to EDC exposures: neurobehavioral deficits 
and disorders (> 150 billion euros; Bellanger 
et al. 2015), obesity and diabetes (> 18 billion 
euros; Legler et al. 2015), and male repro-
ductive disorders and diseases (> 15 billion 
euros; Hauser et al. 2015). Altogether, the 
median cost to the EU for EDCs with the 
highest probability of causation was esti-
mated at 157 billion euros per year (Trasande 
et  al. 2015). Whereas exposure to oil and 
gas operation chemicals individually would 
likely result in only a fraction of these costs, 
increasing exposure to additional hormonally 
active chemicals is a cause for concern given 
the additive nature of many of these receptor 
systems. As such, there are potentially large 
financial implications for exposure to EDCs 
from their use in oil and gas operations.

Conclusions
Herein, we have provided a series of recom-
mendations that will allow scientifically defen-
sible, accurate assessments of the potential 
endocrine-related risks from chemical exposure 
associated with oil and natural gas operations. 
We present these recommendations in light 
of the growing body of information regarding 
both chemical concentrations in the environ-
ment and adverse health outcomes reported in 
humans and in wildlife. We suggest that these 
approaches will lead to improved information 
for resource management decisions and will 
ultimately protect and improve human health.
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